3D Models of Astrophysical Masers with Polarization

M. D. Gray, K. Asanok, M.Phetra, T. Chanapote (NARIT)
S. Etoka, B. Pimpanuwat, S. Etoka (JBCA)

EVPA Reversals

- Examples of EVPA flips ~90 degrees in single VLBI features
- TX Cam in ring SW (Tobin+, 2019)
- R Cas in ring NE (Assaf+, 2013)

R Cas

- EVPA = 0.5atan(U/Q)
- Higher polarized intensity in RCas (800 vs 10)mJy/beam

Interpretations

- Zeeman

Rotation too smooth

- Local Curvature of B

Could explain smooth transition of EVPA

Would not fit

- Anisotropic Radiative Pump
$\mathrm{g} \Omega$ mixes substates too much?
Could have a null position in m_{1} as observed
Expected fall in m, with r (not in TX Cam)
- Anisotropic Resonant Scattering

Difficult to get observed $\mathrm{m}_{\mathrm{c}} \ll \mathrm{m}_{1}$: needs special field orientation

New Model

- Need to analyse irregular objects at VLBI scale
- Stokes parameters problematic in 3D
- Use electric field components; naturally leads to polarization
- Solve for off-diagonal DM elements

Testing: domains

- Only have 1D models for comparison
- Construct tube domains in the hope that a long, thin cylinder will do
- Various aspect ratios
- Usual model has L/r = 10
- Long axis defines global z

Population Solutions

- Long axis of tube always z

- Many rays, j, with own axes and come from distant sphere
- B is aligned on its own z axis
- Molecule dipoles pure in system based on B
- Solve for off-diagonal DM elements at each node
- Compute inversions

Formal Solutions

- (Almost) parallel rays from small patch of sky propagate to observer
- Current models have observer at zor -z, 1000 units away
- Inversions and DM elements now known at all nodes
- Calculate images, spectra

Tests: Wide Splitting

- Definitions:
- IEEE axis system for formal solution (see figure)
- For molecule like OH, s+ has the lower frequency (Garcia Barreto et al. 1988 (see figure)
- IAU Stokes V = RCP - LCP
- To agree with observations, + ve V at lower frequency \rightarrow B away from observer

Results

Stokes U (red), Q (blue) \& V (green)

- No pi transition present: ok
- Field towards observer, -ve Stokes V at lower frequency
- Consistent with expectations
- Problems
(1) Stokes U appears to have a constant offset from zero

Cross field

- Field now along x axis
- Z-axis still points at observer
- Pi dipole aligned with field (x)
- Sigma dipoles helical about xaxis; we see them edge on along y-axis
- Expect pi to have opposite Q from sigmas; pi should be +ve (x-dominated), sigmas negative

Results

Stokes U (red), Q (blue) \& V (green)

"../data/formal/view1/ufn "../data/formal/view1/vfn "../data/formal/view1/qfn

- Pi has positive Q; sigmas both have -ve Q
- U and V much weaker
- Conforms to expectations
- Problems

Are surviving amounts of U \& V acceptable (model is not completely 1D)?

Images

Narrow Splitting Tests

- $\nu_{0}=43.122 \mathrm{GHz}(\mathrm{SiO})$
- Coverage 3 Doppler widths
- Loss rate $\Gamma=5 \mathrm{~Hz}$
- $B=10 G$
- $\Delta v_{z}=740.5 B(G)=7.405 \mathrm{kHz}$
- $\Delta v_{\mathrm{D}}=156 \sqrt{ } \mathrm{~T}_{3} \mathrm{kHz} ; \mathrm{T}_{3}=1$
- $\Delta v_{D} / \Delta v_{z} \sim 21$; use 63 bins

Comments

- Situation $\Delta v_{D} \gg \Delta v_{z} \gg \Gamma$
- Stimulated emission rate R from ~ 0 to level $\ll \Delta v_{z}$
- Essentially case 2a in GKK (1973)
- ΔV_{z} often written as $(1 / 2) \mathrm{g} \Omega$
- High B of 10G means case good for large R
- Quantization based on direction of B-field
- If $R \gg \Delta v_{z}$ should change to ray axis quantization

General Results:Full Stokes

- Polarized flux density limited to ~40\% (good)
- U,V often close to zero at line centre (good)
- Polarized flux density varies with angle of magnetic field to z-axis of domain
- Typical polarization fraction of a few per cent

Some results

- Spectral narrowing
- Saturation

- Development of polarization
- Correct behaviour with angle to B?

Development of Saturation

- Inversion in pi-transition drops fastest (expected for B at 90 degrees)
- Sigmas symmetric
- Most unstable part of model where saturation sets in strongly (~depth 115-120)
- Earlier version run to frational inversion <0.4 in some nodes

S-curve

- Upper: observer at 0 degrees (distant z)
- Lower: observer at 180 degrees (distant -z)
- Flip in sign of U \& V with viewpoint
- Expected behaviour; Q has constant -ve sign
- Is this consistent with angle?

Variation with Field Angle

- Compare to 1D predictions (on left)
- Not same field, but expect only a weak dependence over wide saturation range
- Circular off-centre by smaller frequency than current model
- Need to run new version with >10 angles

