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Abstract

\_We found the component C is considered as recollimation shock based on the analysis of jet size and polarization.

Double Synchrotron Self-Absorption Spectrum of the Blazar

Astronomy and Space Science, University of Science and Technology, Daejeon, 34113, Republic of Korea

hwjeong@kasi.re.kr

The blazar 3C 454.3 is known for its strong outburst across the whole electromagnetic spectrum. Multi-wavelength radio observations enable us to study the spectral variability of relativistic
radio jets in the source. In our work, we use multi-wavelength radio observations from 3 GHz to 340 GHz. From the spectral analysis using the multi-wavelength data we found two
synchrotron self-absorption(SSA) features in the spectra for the compact variable emission regions in the source. One peak of the SSA spectral features is found at a frequency range of 3-37
GHz (LSS), and the other at 56-124 GHz (HSS). By using the derived SSA turnover frequency and peak flux density, we estimated B-field strength (Bssa) for the SSA regions in the relativistic
jets. The estimated B-field strengths of the HSS and LSS features are >0.2mG and >7mG, respectively. The LSS B-field strength is stronger than the estimated B-field strength (Bea =2~4mG)
under the equipartition condition before the 2014 June y-ray flare. We found the LSS region is close to the quasi-stationary (C) component ~0.6 mas away from the VLBI core at 43GHz. And
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1. The Blazar 3C 454.3

- One of the most extreme cases among blazers

5. B-Field Strength Estimation
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By using the estimated turnover frequency(vm) and peak flux density(Sm), and interpolated size(dm) of SSA emitting region from jet|
geometry, we estimated B-field strength for both SSA region and equipartition condition (Fig4). Higher Bssa than Beq of the LSS indicates|

::: I‘l‘;tt':::;’;::3’:n'§1:r‘:;5flgjr?:;e:v::t";;‘Zﬁ:;;l‘:':l.C;’t;;o) the LSS emitting region is magnetically dominated. The formulas of Bssa and Bea were referred from Marscher (1983) and Kataoka &
Stawarz (2005), respectively. In the estimation, we inferred the dimensionless factor b(a) from Table 1, in Marscher (1983), and we assumed|
- The quasi-stationary (C) component ~0.6 mas away from 43 GHz 1 as 100 which is the ratio of energy density between proton and electron.
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limits. Blue and green dots are B-field strength of SSA region(Bssa) and equipartition

\Conditwon(Bso), respectively. ) @bserved. These results may indicate the component C of 3C 454.3 is recollimation shock.

- Synchrotron self-absorption(SSA) is an absorption of synchrotron \_ Kataoka & Stawarz (2005) )
photons by the electrons in relativistic jets itself as shown in Fig 1. r Va
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